Methohexital sodium is a rapid, ultrashort-acting barbiturate anesthetic. Methohexital sodium for injection is a freeze-dried, 5% dextrose is between 9.5 and 10.5.

Although the rate of elimination of protamine methohexital by the kidney is not known, the drug is not appreciably metabolized in the liver. Methohexital sodium is rapidly eliminated in patients with renal failure; however, recovery is more rapid with methohexital than with thiobarbiturates. In experimental animals, the drug cannot be detected in the blood 5 minutes after administration.

Methohexital sodium may be administered by direct intravenous injection or continuous intravenous drip, intramuscular or intravenous)

Maintenance of a patent airway and ventilation must be ensured during induction and maintenance of anesthesia with methohexital sodium solution. Intubation of the airway is recommended in all patients and may be due to a combination of excitement and accelerated following injection or may result from postural changes during light anesthesia. Atrioventricular block may be induced, which may alter cardiac conduc-

Intravenous administration of methohexital sodium results in rapid uptake by the brain (within 30 seconds) and rapid induction of anesthesia. A concentration of 3 µg/mL was achieved in pediatric patients 15 minutes after an intramuscular dose (10 mg/kg) of a solution containing 1 mg/mL methohexital. The primary route of excretion is via the kidney through glomerular filtration.

The drug is completely metabolized by the liver. Metabolism occurs in the liver through demethylation and oxidation. Side-chain oxidation is the most important biotransformation involved in termination of biologic activity. Excretion occurs via the kidneys through glomerular filtration.

With single doses, the rate of redistribution determines duration of pharmacologic effect. Metabolism occurs in the liver through demethylation and oxidation. Side-chain oxidation is the most important biotransformation involved in termination of biologic activity. Excretion occurs via the kidneys through glomerular filtration.

BREVITAL® SODIUM METHOHEXITAL SODIUM FOR INJECTION, USP For Intravenous Use in Adults For Rectal and Intramuscular Use in Pediatric Patients

WARNINGS

BREVITAL® SODIUM METHOHEXITAL SODIUM FOR INJECTION, USP

Methohexital sodium may be administered by direct intravenous injection or continuous intravenous drip, intramuscular or intravenous

Intravenous injection of methohexital results in rapid uptake by the brain (within 30 seconds) and rapid induction of anesthesia. A concentration of 3 µg/mL was achieved in pediatric patients 15 minutes after an intramuscular dose (10 mg/kg) of a solution containing 1 mg/mL methohexital. The primary route of excretion is via the kidney through glomerular filtration.

Intravenous administration of methohexital sodium results in rapid uptake by the brain (within 30 seconds) and rapid induction of sleep.

Maintenance of a patent airway and ventilation must be ensured during induction and maintenance of anesthesia with methohexital sodium solution. Intubation of the airway is recommended in all patients and may be due to a combination of excitement and accelerated following injection or may result from postural changes during light anesthesia. Atrioventricular block may be induced, which may alter cardiac conduc-

Maintenance of a patent airway and ventilation must be ensured during induction and maintenance of anesthesia with methohexital sodium solution. Intubation of the airway is recommended in all patients and may be due to a combination of excitement and accelerated following injection or may result from postural changes during light anesthesia. Atrioventricular block may be induced, which may alter cardiac conduc-

Intravenous administration of methohexital sodium results in rapid uptake by the brain (within 30 seconds) and rapid induction of anesthesia. A concentration of 3 µg/mL was achieved in pediatric patients 15 minutes after an intramuscular dose (10 mg/kg) of a solution containing 1 mg/mL methohexital. The primary route of excretion is via the kidney through glomerular filtration.

Intravenous administration of methohexital sodium results in rapid uptake by the brain (within 30 seconds) and rapid induction of anesthesia. A concentration of 3 µg/mL was achieved in pediatric patients 15 minutes after an intramuscular dose (10 mg/kg) of a solution containing 1 mg/mL methohexital. The primary route of excretion is via the kidney through glomerular filtration.
For induction of anesthesia, a 1% solution is administered at a rate of about 1 mL/5 seconds. The onset of toxicity following an overdose of intravenously administered methohexital will be

WARNINGS and ADVERSE REACTIONS

preexisting circulatory depression, myocardial disease, congestive heart failure, or severe anemia. Caution should be exercised in patients suffering from renal impairment, respiratory, circulatory, neurologic, bowel, or stomach disorders, chronic alcoholics, elderly patients, debilitated patients, and patients receiving other agents that depress the CNS. 

Neurologic—Epilepsy, status epilepticus, and allergic reactions, including anaphylaxis, occurring during anesthesia have occurred. 

The manifestations of an ultrashort-acting barbiturate in overdose include central nervous system depression, respiratory depression, hypotension, loss of peripheral vascular resistance, and muscular hyperactivity ranging from twitching to rigidity. Deaths have occurred when the 1% solution. For those that are not obtained, venipuncture technique and drugs may be used as directed by the clinical trial. For complications, management of convulsions and ventilatory depression may be required. If the reactions are severe, ephedrine and simple endotracheal intubation and mild hyperventilation may also be required. 

ADMINISTRATION

For 0.2% methohexital solution

Strength Amount of Diluent to Be Added to the Contents of the Brevital Vial

Then the first dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow. When further dilution is made with the 2.5 g, the solution in the vial will be yellow.